Reg. I	Vo.	 ***		 ••••	 	*****
Name	· :	 	****	 	 	

Sixth Semester B.Tech. Degree Examination, May 2016 (2008 Scheme)

Branch: ELECTRICAL AND ELECTRONICS 08.601 : Electrical Machines - III (E)

Time: 3 Hours Max. Marks: 100

> Instruction: Answer all questions in Part - A and one full question from each Module in Part - B.

PART - A (4 marks each)

- 1. Explain with a sketch the construction of squirrel cage induction motor.
- 2. Draw and explain the phasor diagram of a 3-phase induction motor.
- 3. Draw the equivalent ckt of the 3-phase induction motor and explain its parameters.
- 4. Explain crawling of a 3-ph induction motor.
- 5. Draw and explain the current locus of a double cage induction motor.
- 6. Explain with a circuit diagram, the working of a star-delta starter.
- 7. Explain the principle of slip power recovery scheme.
- 8. Explain the principle of working of a synchronous induction motor.
- 9. Describe the principle of shaded pole starting of single phase induction motor.
- 10. Explain the principle of operation of linear induction motor. (10×4=40 Marks)

PART – B (20 marks each)

Module - I

11.	a)	Derive the expression for torque developed in a 3-phase induction motor and obtain the condition for maximum torque. Also sketch and explain the torque-slip characteristics.	1(
	b)	A 6 pole, 3 phase, 50 Hz, induction motor develops maximum torque of 300 N-m at a speed of 960 rpm. Determine the torque exerted by the motor at 5% slip. The rotor resistance/phase is 0.6 ohms.	10
		Instruction: Answer all questions in Pan - A and SO: full question nom	
12.	a)	Prove that the locus of stator current of an induction motor is a circle.	E
	b)	A 2.4 kw, 400 V, 50 Hz, 3 phase delta connected induction motor has stator resistance = 0.06Ω /phase. Stator turns/Rotor turns = 2. The test values are No-load test – 400 V, 3.2 A, $\cos\phi$ = 0.17. Blocked Rotor test – 210 V, 16A, $\cos\phi_{sc}$ = 0.35. Draw the circle diagram and find : 1) Line current, power factor and slip for full load condition 2) Maximum torque in terms of full load torque.	15
		The Equivalent of the 3 phase induction motor and explain its parameters.	
		Module – II	
13.	a)	With neat diagram, explain the principle of operation of a rotor resistance starter used for 3-ph induction motor.	8
	b)	The cages of a double cage induction motor have stand still impedances of $(3.5+j\ 1.5)\Omega$ and $(0.6+j\ 7.0)\Omega$ respectively. The full load slip is 6%. Find the starting torque at normal voltage in terms of full load torque. Neglect stator impedance and magnetising current.	12
		colain the principle of warking of a synchronous induction no loss.	
14.	a)	Explain any three methods of speed control of 3-phase induction motor.	12
	b)	Explain the principle of operation of an induction generator. Compare induction generator with synchronous generator.	8

Module - III

 a) Explain the construction and principle of operation of synchronous induction motor.

10

b) A 400 V, 3-phase, 50 Hz, induction motor has a magnetising current of 15A. When at rest, the voltage between slip rings of star connected rotor is 150 V. As a synchronous induction motor dc is supplied between one slip ring and other two joined together. Find the rotor current when the motor takes 60 A at a power factor of 0.8 leading.

10

OR

16. a) Explain the double field revolving theory of single phase induction motor and draw its torque-slip curve.

8

- b) Write short notes on:
 - 1) Universal motor
 - 2) Single phase repulsion motor.

12